The Paleocene ( ), or Palaeocene, is a geological epoch that lasted from about 66 to 56 Ma (million years ago). It is the first epoch of the Paleogene Period in the modern Cenozoic Era. The name is a combination of the Ancient Greek παλαιός palaiós meaning "old" and the Eocene Epoch (which succeeds the Paleocene), translating to "the old part of the Eocene".
The epoch is bracketed by two major events in Earth's history. The K–Pg extinction event, brought on by an asteroid impact (Chicxulub impact) and possibly volcanism (Deccan Traps), marked the beginning of the Paleocene and killed off 75% of species, most famously the non-avian dinosaurs. The end of the epoch was marked by the Paleocene–Eocene Thermal Maximum (PETM), which was a major climatic event wherein about 2,500–4,500 gigatons of carbon were released into the atmosphere and ocean systems, causing a spike in global temperatures and ocean acidification.
In the Paleocene, the continents of the Northern Hemisphere were still connected via some ; and South America, Antarctica, and Australia had not completely separated yet. The Rocky Mountains were being uplifted, the Americas had not yet joined, the Indian Plate had begun its collision with Asia, and the North Atlantic Igneous Province was forming in the third-largest event of the last 150 million years. In the oceans, the thermohaline circulation probably was much different from what it is today, with downwellings occurring in the North Pacific rather than the North Atlantic, and water density mainly being controlled by salinity rather than temperature.
The K–Pg extinction event caused a floral and faunal turnover of species, with previously abundant species being replaced by previously uncommon ones. In the Paleocene, with a global average temperature of about , compared to in more recent times, the Earth had a greenhouse climate without permanent ice sheets at the poles, like the preceding Mesozoic. As such, there were forests worldwide—including at the poles—but they had low species richness in regards to plant life, and were populated by mainly small creatures that were rapidly evolving to take advantage of the recently emptied Earth. Though some animals attained great size, most remained rather small. The forests grew quite dense in the general absence of large herbivores. proliferated in the Paleocene, and the earliest placental and marsupial mammals are recorded from this time, but most Paleocene taxa have ambiguous affinities. In the seas, ray-finned fish rose to dominate open ocean and recovering reef ecosystems.
The term "Paleocene" is a portmanteau combination of the Ancient Greek palaios παλαιός meaning "old", and the word "Eocene", and so means "the old part of the Eocene". The Eocene, in turn, is derived from Ancient Greek eo— eos ἠώς meaning "dawn", and—cene kainos καινός meaning "new" or "recent", as the epoch saw the dawn of recent, or modern, life. Paleocene did not come into broad usage until around 1920. In North America and mainland Europe, the standard spelling is "Paleocene", whereas it is "Palaeocene" in the UK. Geologist T. C. R. Pulvertaft has argued that the latter spelling is incorrect because this would imply either a translation of "old recent" or a derivation from "pala" and "Eocene", which would be incorrect because the prefix palæo- uses the ligature æ instead of "a" and "e" individually, so only both characters or neither should be dropped, not just one.
The K–Pg boundary is clearly defined in the fossil record in numerous places around the world by a high-iridium band, as well as discontinuities with fossil flora and fauna. It is generally thought that a wide asteroid impact, forming the Chicxulub Crater in the Yucatán Peninsula in the Gulf of Mexico, and Deccan Trap volcanism caused a cataclysmic event at the boundary resulting in the extinction of 75% of all species.
The Paleocene ended with the Paleocene–Eocene thermal maximum, a short period of intense warming and ocean acidification brought about by the release of carbon en masse into the atmosphere and ocean systems, which led to a mass extinction of 30–50% of benthic foraminifera–planktonic species which are used as of the health of a marine ecosystem—one of the largest in the Cenozoic. This event happened around 55.8 Ma, and was one of the most significant periods of global change during the Cenozoic.
The Danian was first defined in 1847 by German-Swiss geologist Pierre Jean Édouard Desor based on the Danish chalks at Stevns Klint and Faxse, and was part of the Cretaceous, succeeded by the Tertiary Montian Stage. In 1982, after it was shown that the Danian and the Montian are the same, the ICS decided to define the Danian as starting with the K–Pg boundary, thus ending the practice of including the Danian in the Cretaceous. In 1991, the GSSP was defined as a well-preserved section in the El Haria Formation near El Kef, Tunisia, , and the proposal was officially published in 2006.
The Selandian and Thanetian are both defined in Itzurun beach by the Basque town of Zumaia, , as the area is a continuous early Santonian to early Eocene sea cliff outcrop. The Paleocene section is an essentially complete, exposed record thick, mainly composed of alternating hemipelagic sediments deposited at a depth of about . The Danian deposits are sequestered into the Aitzgorri Limestone Formation, and the Selandian and early Thanetian into the Itzurun Formation. The Itzurun Formation is divided into groups A and B corresponding to the two stages respectively. The two stages were ratified in 2008, and this area was chosen because of its completion, low risk of erosion, proximity to the original areas the stages were defined, accessibility, and the protected status of the area due to its geological significance.
The Selandian was first proposed by Danish geologist Alfred Rosenkrantz in 1924 based on a section of fossil-rich glauconitic overlain by gray clay which unconformably overlies Danian chalk and limestone. The area is now subdivided into the Æbelø Formation, Holmehus Formation, and the Østerrende Clay. The beginning of this stage was defined by the end of carbonate rock deposition from an open ocean environment in the North Sea region (which had been going on for the previous 40 million years). The Selandian deposits in this area are directly overlain by the Eocene Fur Formation—the Thanetian was not represented here—and this discontinuity in the deposition record is why the GSSP was moved to Zumaia. Today, the beginning of the Selandian is marked by the appearances of the nannofossils Fasciculithus tympaniformis, Neochiastozygus perfectus, and Chiasmolithus edentulus, though some foraminifera are used by various authors.
The Thanetian was first proposed by Swiss geologist Eugène Renevier, in 1873; he included the south England Thanet Formation, Woolwich, and Reading formations. In 1880, French geologist Gustave Frédéric Dollfus narrowed the definition to just the Thanet Formation. The Thanetian begins a little after the mid-Paleocene biotic event—a short-lived climatic event caused by an increase in methane—recorded at Itzurun as a dark interval from a reduction of calcium carbonate. At Itzurun, it begins about above the base of the Selandian, and is marked by the first appearance of the algae Discoaster and a diversification of Heliolithus, though the best correlation is in terms of paleomagnetism. A polarity chron is the occurrence of a geomagnetic reversal—when the North and South poles switch polarities. Chron 1 (C1n) is defined as modern day to about 780,000 years ago, and the n denotes "normal" as in the polarity of today, and an r "reverse" for the opposite polarity. The beginning of the Thanetian is best correlated with the C26r/C26n reversal.
The Laramide orogeny, which began in the Late Cretaceous, continued to uplift the Rocky Mountains; it ended at the end of the Paleocene. Because of this and a drop in sea levels resulting from tectonic activity, the Western Interior Seaway, which had divided the continent of North America for much of the Cretaceous, had receded.
Between about 60.5 and 54.5 Ma, there was heightened volcanic activity in the North Atlantic region—the third largest event in the last 150 million years—creating the North Atlantic Igneous Province. The proto-Iceland hotspot is sometimes cited as being responsible for the initial volcanism, though and resulting volcanism have also contributed. This volcanism may have contributed to the opening of the North Atlantic Ocean and seafloor spreading, the divergence of the Greenland Plate from the North American Plate, and, climatically, the PETM by dissociating methane clathrate crystals on the seafloor resulting in the mass release of carbon.
North and South America remained separated by the Central American Seaway, though an island continental arc (the South Central American Arc) had already formed about 73 Ma. The Caribbean Large Igneous Province (now the Caribbean Plate), which had formed from the Galápagos hotspot in the Pacific in the latest Cretaceous, was moving eastward as the North American and South American plates were getting pushed in the opposite direction due to the opening of the Atlantic (strike-slip tectonics). This motion would eventually uplift the Isthmus of Panama by 2.6 Ma. The Caribbean Plate continued moving until about 50 Ma when it reached its current position.
The components of the former southern supercontinent Gondwanaland in the Southern Hemisphere continued to drift apart, but Antarctica was still connected to South America and Australia. Africa was heading north towards Europe, and the Indian subcontinent towards Asia, which would eventually close the Tethys Ocean. The Indian Plate and Eurasian Plate Plates began colliding in the Paleocene, with uplift (and a land connection) beginning in the Miocene about 24–17 Ma. There is evidence that some plants and animals could migrate between India and Asia during the Paleocene, possibly via intermediary island arcs.
There is evidence of deep water formation in the North Pacific to at least a depth of about . The elevated global deep water temperatures in the Paleocene may have been too warm for thermohaline circulation to be predominately heat driven. It is possible that the greenhouse climate shifted precipitation patterns, such that the Southern Hemisphere was wetter than the Northern, or the Southern experienced less evaporation than the Northern. In either case, this would have made the Northern more saline than the Southern, creating a density difference and a downwelling in the North Pacific traveling southward. Deep water formation may have also occurred in the South Atlantic.
It is largely unknown how global currents could have affected global temperature. The formation of the Northern Component Waters by Greenland in the Eocene—the predecessor of the AMOC—may have caused an intense warming in the North Hemisphere and cooling in the Southern, as well as an increase in deep water temperatures. In the PETM, it is possible deep water formation occurred in saltier tropical waters and moved polewards, which would increase global surface temperatures by warming the poles. Also, Antarctica was still connected to South America and Australia, and, because of this, the Antarctic Circumpolar Current—which traps cold water around the continent and prevents warm equatorial water from entering—had not yet formed. Its formation may have been related in the freezing of the continent. Warm coastal at the poles would have inhibited permanent ice cover. Conversely, it is possible deep water circulation was not a major contributor to the greenhouse climate, and deep water temperatures more likely change as a response to global temperature change rather than affecting it.
In the Arctic, coastal upwelling may have been largely temperature and wind-driven. In summer, the land surface temperature was probably higher than oceanic temperature, and the opposite was true in the winter, which is consistent with in Asia. Open-ocean upwelling may have also been possible.
The poles probably had a cool temperate climate; northern Antarctica, Australia, the southern tip of South America, what is now the US and Canada, eastern Siberia, and Europe warm temperate; middle South America, southern and northern Africa, South India, Middle America, and China arid; and northern South America, central Africa, North India, middle Siberia, and what is now the Mediterranean Sea tropical. South-central North America had a humid, monsoonal climate along its coastal plain, but conditions were drier to the west and at higher altitudes. Svalbard was temperate, having a mean temperature of 19.2 ± 2.49 °C during its warmest month and 1.7 ± 3.24 °С during its coldest.
Global deep water temperatures in the Paleocene likely ranged from , compared to in modern day. Based on the upper limit, average sea surface temperatures (SSTs) at 60°N and S would have been the same as deep sea temperatures, at 30°N and S about , and at the equator about . In the Danish Palaeocene sea, SSTs were cooler than those of the preceding Late Cretaceous and the succeeding Eocene. The Paleocene foraminifera assemblage globally indicates a defined deep-water thermocline (a warmer mass of water closer to the surface sitting on top of a colder mass nearer the bottom) persisting throughout the epoch.
Early Paleocene atmospheric CO2 levels at what is now Castle Rock, Colorado, were calculated to be between 352 and 1,110 parts per million (ppm), with a median of 616 ppm. Based on this and estimated plant-gas exchange rates and global surface temperatures, the climate sensitivity was calculated to be +3 °C when CO2 levels doubled, compared to 7 °C following the formation of ice at the poles. CO2 levels alone may have been insufficient in maintaining the greenhouse climate, and some positive feedbacks must have been active, such as some combination of cloud, aerosol, or vegetation related processes. A 2019 study identified changes in orbital eccentricity as the dominant drivers of climate between the late Cretaceous and the early Eocene.
The Danian–C2 Event 65.2 Ma in the early Danian spanned about 100,000 years, and was characterized by an increase in carbon, particularly in the deep sea. Since the mid-Maastrichtian, more and more carbon had been sequestered in the deep sea possibly due to a global cooling trend and increased circulation into the deep sea. The Dan–C2 event may represent a release of this carbon after deep sea temperatures rose to a certain threshold, as warmer water can dissolve less carbon. Alternatively, the cause of the Dan-C2 event may have been a pulse of Deccan Traps volcanism. Savanna may have temporarily displaced forestland in this interval.
Around 62.2 Ma in the late Danian, there was a warming event and evidence of ocean acidification associated with an increase in carbon; at this time, there was major seafloor spreading in the Atlantic and volcanic activity along the southeast margin of Greenland. The Latest Danian Event, also known as the Top Chron C27n Event, lasted about 200,000 years and resulted in a 1.6–2.8 °C increase in temperatures throughout the water column. Though the temperature in the latest Danian varied at about the same magnitude, this event coincides with an increase of carbon.
About 60.5 Ma at the Danian/Selandian boundary, there is evidence of Anoxic waters spreading out into coastal waters, and a drop in sea levels which is most likely explained as an increase in temperature and evaporation, as there was no ice at the poles to lock up water.
During the mid-Palaeocene biotic event (MPBE), also known as the Early Late Palaeocene Event (ELPE), around 59 Ma (roughly 50,000 years before the Selandian/Thanetian boundary), the temperature spiked probably due to a mass release of the deep sea methane hydrate into the atmosphere and ocean systems. Carbon was probably output for 10–11,000 years, and the aftereffects likely subsided around 52–53,000 years later. There is also evidence this occurred again 300,000 years later in the early Thanetian dubbed MPBE-2. Respectively, about 83 and 132 gigatons of methane-derived carbon were ejected into the atmosphere, which suggests a rise in temperature, and likely caused heightened seasonality and less stable environmental conditions. It may have also caused an increase of grass in some areas.
From 59.7 to 58.1 Ma, during the late Selandian and early Thanetian, organic carbon burial resulted in a period of climatic cooling, sea level fall and transient ice growth. This interval saw the highest δ18O values of the epoch.
The duration of carbon output is controversial, but most likely about 2,500 years. This carbon also interfered with the carbon cycle and caused ocean acidification, and potentially altered and slowed down ocean currents, the latter leading to the expansion of oxygen minimum zones (OMZs) in the deep sea. In surface water, OMZs could have also been caused from the formation of strong thermoclines preventing oxygen inflow, and higher temperatures equated to higher productivity leading to higher oxygen usurpation. Further, expanding OMZs could have caused the proliferation of sulfate-reducing microorganisms which create highly toxic hydrogen sulfide H2S as a waste product. During the event, the volume of sulfidic water may have been 10–20% of total ocean volume, in comparison to today's 1%. This may have also caused chemocline upwellings along continents and the dispersal of H2S into the atmosphere. During the PETM there was a temporary dwarfing of mammals apparently caused by the upward excursion in temperature.
The extinction of large herbivorous dinosaurs may have allowed the forests to grow quite dense, and there is little evidence of wide open plains. Plants evolved several techniques to cope with high plant density, such as buttress root to better absorb nutrients and compete with other plants, increased height to reach sunlight, larger diaspore in seeds to provide added nutrition on the dark forest floor, and epiphyte where a plant grows on another plant in response to less space on the forest floor. Despite increasing density—which could act as fuel—wildfires decreased in frequency from the Cretaceous to the early Eocene as the atmospheric oxygen levels decreased to modern day levels, though they may have been more intense.
The strata immediately overlaying the K–Pg extinction event are especially rich in fern fossils. Ferns are often the first species to colonize areas damaged by forest fires, so this "fern spike" may mark the recovery of the biosphere following the impact (which caused blazing fires worldwide). The diversifying herb flora of the early Paleocene either represent pioneer species which re-colonized the recently emptied landscape, or a response to the increased amount of shade provided in a forested landscape. , ferns, and angiosperm may have been important components of the Paleocene understory.
In general, the forests of the Paleocene were species-poor, and diversity did not fully recover until the end of the Paleocene. For example, the floral diversity of what is now the Holarctic region (comprising most of the Northern Hemisphere) was mainly early members of Ginkgo, Metasequoia, Glyptostrobus, Macginitiea, Platanus, Carya, Ampelopsis, and Cercidiphyllum. Patterns in plant recovery varied significantly with latitude, climate, and altitude. For example, what is now Castle Rock, Colorado featured a rich rainforest only 1.4 million years after the event, probably due to a rain shadow effect causing regular monsoon seasons. Conversely, low plant diversity and a lack of specialization in insects in the Colombian Cerrejón Formation, dated to 58 mya, indicates the ecosystem was still recovering from the K–Pg extinction event 7 million years later.
In what is now the Gulf Coast, angiosperm diversity increased slowly in the early Paleocene, and more rapidly in the middle and late Paleocene. This may have been because the effects of the K–Pg extinction event were still to some extent felt in the early Paleocene, the early Paleocene may not have had as many open niches, early angiosperms may not have been able to evolve at such an accelerated rate as later angiosperms, low diversity equates to lower evolution rates, or there was not much angiosperm migration into the region in the early Paleocene. Over the K–Pg extinction event, angiosperms had a higher extinction rate than (which include conifers, , and relatives) and (ferns, , and relatives); zoophilous angiosperms (those that relied on animals for pollination) had a higher rate than anemophilous angiosperms; and evergreen angiosperms had a higher rate than deciduous angiosperms as deciduous plants can become dormant in harsh conditions.
In the Gulf Coast, angiosperms experienced another extinction event during the PETM, which they recovered quickly from in the Eocene through immigration from the Caribbean and Europe. During this time, the climate became warmer and wetter, and it is possible that angiosperms evolved to become stenotherm by this time, able to inhabit a narrow range of temperature and moisture; or, since the dominant floral ecosystem was a highly integrated and complex closed-canopy rainforest by the middle Paleocene, the plant ecosystems were more vulnerable to climate change. There is some evidence that, in the Gulf Coast, there was an extinction event in the late Paleocene preceding the PETM, which may have been due to the aforementioned vulnerability of complex rainforests, and the ecosystem may have been disrupted by only a small change in climate.
At the North Pole, woody angiosperms had become the dominant plants, a reversal from the Cretaceous where herbs proliferated. The Iceberg Bay Formation on Ellesmere Island, Nunavut (latitude 75–80° N) shows remains of a late Paleocene Metasequoia forest, the canopy reaching around , and a climate similar to the Pacific Northwest. On the Alaska North Slope, Metasequoia was the dominant conifer. Much of the diversity represented migrants from nearer the equator. Deciduousness was dominant, probably to conserve energy by retroactively shedding leaves and retaining some energy rather than having them die from frostbite. In south-central Alaska, the Chickaloon Formation preserves peat-forming swamps dominated by taxodiaceous conifers and clastic floodplains occupied by angiosperm–conifer forests.
At the South Pole, due to the increasing isolation of Antarctica, many plant taxa were endemic to the continent instead of migrating down. Patagonian flora may have originated in Antarctica. The climate was much cooler than in the Late Cretaceous, though frost probably was not common in at least coastal areas. East Antarctica was likely warm and humid. Because of this, evergreen forests could proliferate as, in the absence of frost and a low probability of leaves dying, it was more energy efficient to retain leaves than to regrow them every year. One possibility is that the interior of the continent favored deciduous trees, though prevailing continental climates may have produced winters warm enough to support evergreen forests. As in the Cretaceous, conifers, Nothofagus, and Proteaceae angiosperms were common.
In general, Paleocene mammals retained this small size until near the end of the epoch, and, consequently, early mammal bones are not well preserved in the fossil record, and most of what is known comes from fossil teeth. , a now-extinct rodent-like group not closely related to any modern mammal, were the most successful group of mammals in the Mesozoic, and they reached peak diversity in the early Paleocene. During this time, multituberculate taxa had a wide range of dental complexity, which correlates to a broader range in diet for the group as a whole. Multituberculates declined in the late Paleocene and went extinct at the end of the Eocene, possibly due to competition from newly evolving rodents.
Nonetheless, following the K–Pg extinction event, mammals very quickly diversified and filled the empty niches. Mammal richness during this epoch, in contrast to the present day, varied insignificantly with latitude. Modern mammals are subdivided into (modern members are and ) and . These three groups all originated in the Cretaceous. Paleocene marsupials include Peradectes, and monotremes Monotrematum. The epoch featured the rise of many crown group placental groups—groups that have living members in modern day—such as the earliest afrotherian Ocepeia, xenarthran Utaetus, rodent Tribosphenomys and Paramys, the forerunners of primates the Plesiadapiformes, earliest Ravenictis and Pristinictis, possible Palaeanodonta, possible forerunners of odd-toed ungulates Phenacodontidae, and Nyctitheriidae. Though therian mammals had probably already begun to diversify around 10 to 20 million years before the K–Pg extinction event, average mammal size increased greatly after the boundary, and a radiation into frugivory (fruit-eating) and omnivory began, namely with the newly evolving large herbivores such as the Taeniodonta, Tillodonta, Pantodonta, Polydolopimorphia, and the Dinocerata. Large carnivores include the wolf-like Mesonychia, such as Ankalagon and Sinonyx.
Though there was an explosive diversification, the affinities of most Paleocene mammals are unknown, and only primates, carnivorans, and rodents have unambiguous Paleocene origins, resulting in a 10 million year gap in the fossil record of other mammalian crown orders. The most species-rich order of Paleocene mammals is Condylarthra, which is a wastebasket taxon for miscellaneous bunodont ungulate. Other ambiguous orders include the Leptictida, Cimolesta, and Creodonta. This uncertainty blurs the early evolution of placentals.
Almost all archaic birds (any bird outside Neornithes) went extinct during the K–Pg extinction event, although the archaic Qinornis is recorded in the Paleocene. Their extinction may have led to the proliferation of neornithine birds in the Paleocene, and the only known Cretaceous neornithine bird is the waterbird Vegavis, and possibly also the waterbird Teviornis.
In the Mesozoic, birds and exhibited size-related niche partitioning—no known Late Cretaceous flying bird had a wingspan greater than nor exceeded a weight of , whereas contemporary pterosaurs ranged from , probably to avoid competition. Their extinction allowed flying birds to attain greater size, such as and pelecaniformes. The Paleocene pelagornithid Protodontopteryx was quite small compared to later members, with a wingspan of about , comparable to a gull. On the archipelago-continent of Europe, the flightless bird Gastornis was the largest herbivore at tall for the largest species, possibly due to lack of competition from newly emerging large mammalian herbivores which were prevalent on the other continents. The carnivorous Phorusrhacidae in South America have a contentious appearance in the Paleocene with Paleopsilopterus, though the first definitive appearance is in the Eocene.
In the wake of the K–Pg extinction event, 83% of lizard and snake (squamate) species went extinct, and the diversity did not fully recover until the end of the Paleocene. However, since the only major squamate lineages to disappear in the event were the and polyglyphanodontians (the latter making up 40% of Maastrichtian lizard diversity), and most major squamate groups had evolved by the Cretaceous, the event probably did not greatly affect squamate evolution, and newly evolving squamates did not seemingly branch out into new niches as mammals. That is, Cretaceous and Paleogene squamates filled the same niches. Nonetheless, there was a faunal turnover of squamates, and groups that were dominant by the Eocene were not as abundant in the Cretaceous, namely the , Iguanidae, , Pythonoidea, Caenophidia, Booidea, and . Only small squamates are known from the early Paleocene—the largest snake Helagras was in length—but the late Paleocene snake Titanoboa grew to over long, the longest snake ever recorded. Kawasphenodon from the early Paleocene of South America represents the youngest record of Rhynchocephalia outside of New Zealand, where the only extant representative of the order, the tuatara, resides.
Freshwater and were among the aquatic reptiles to have survived the K–Pg extinction event, probably because freshwater environments were not as impacted as marine ones. One example of a Paleocene crocodile is Borealosuchus, which averaged in length at the Wannagan Creek site. Among crocodyliformes, the aquatic and terrestrial Dyrosauridae and the fully terrestrial Sebecidae would also survive the K-Pg extinction event, and a late surviving member of Pholidosauridae is also known from the Danian of Morocco. Three choristoderans are known from the Paleocene: The gharial-like Champsosaurus—the largest is the Paleocene C. gigas at , Simoedosaurus—the largest specimen measuring , and an indeterminate species of the lizard like non-neochoristoderan Lazarussuchus around 44 centimetres in length. The last known choristoderes, belonging to the genus Lazarussuchus, are known from the Miocene.
Turtles experienced a decline in the Campanian (Late Cretaceous) during a cooling event, and recovered during the PETM at the end of the Paleocene. Turtles were not greatly affected by the K–Pg extinction event, and around 80% of species survived. In Colombia, a 60 million year old turtle with a carapace, Carbonemys, was discovered.
Conversely, sharks and rays appear to have been unable to exploit the vacant niches, and recovered the same pre-extinction abundance. There was a faunal turnover of sharks from to , as ground sharks are more suited to hunting the rapidly diversifying ray-finned fish whereas mackerel sharks target larger prey. The first megatoothed shark, Otodus obliquus—the ancestor of the giant megalodon—is recorded from the Paleocene.
Several Paleocene freshwater fish are recorded from North America, including Amiidae, , , Gonorynchidae, Ictaluridae, smelts, and Esox.
The middle-to-late Paleocene French Menat Formation shows an abundance of (making up 77.5% of the insect diversity)—especially (50% of diversity), , , and reticulated beetles—as well as other —such as —and . To a lesser degree, there are also , , Lepidoptera, and flies, though were more common than flies. Representing less than 1% of fossil remains Odonata, caddisflies, mayflies, , , net-winged insects, and possibly .
The Wyoming Hanna Formation is the only known Paleocene formation to produce sizable pieces of amber, as opposed to only small droplets. The amber was formed by a single or a closely related group of either or Pinaceae tree(s) which produced conifer cone similar to those of . Only one insect, a thrips, has been identified.
There is a gap in the ant fossil record from 78 to 55 Ma, except for the Aneuretinae Napakimyrma paskapooensis from the 62–56 Ma Canadian Paskapoo Formation. Given high abundance in the Eocene, two of the modern dominant ant subfamilies—Ponerinae and Myrmicinae—likely originated and greatly diversified in the Paleocene, acting as major hunters of arthropods, and probably competed with each other for food and nesting grounds in the dense angiosperm leaf litter. Myrmicines expanded their diets to seeds and formed trophobiotic symbiosis with , , , and other honeydew secreting insects which were also successful in angiosperm forests, allowing them to invade other , such as the canopy or temperate environments, and achieve a worldwide distribution by the middle Eocene.
About 80% of the butterfly and moth (lepidopteran) fossil record occurs in the early Paleogene, specifically the late Paleocene and the middle-to-late Eocene. Most Paleocene lepidopteran compression fossils come from the Danish Fur Formation. Though there is low family-level diversity in the Paleocene compared to later epochs, this may be due to a largely incomplete fossil record. The evolution of bats had a profound effect on lepidopterans, which feature several anti-predator adaptations such as echolocation jamming and the ability to detect bat signals.
Bees were likely heavily impacted by the K–Pg extinction event and a die-off of flowering plants, though the bee fossil record is very limited. The oldest kleptoparasitic bee, Paleoepeolus, is known from the Paleocene 60 Ma.
Though the Eocene features, by far, the highest proportion of known fossil spider species, the Paleocene spider assemblage is quite low. Some spider groups began to diversify around the PETM, such as , and possibly coelotine spiders (members of the Agelenidae family).
The diversification of mammals had a profound effect on parasitic insects, namely the evolution of bats, which have more ectoparasites than any other known mammal or bird. The PETM's effect on mammals greatly impacted the evolution of , , and Oestroidea.
Marine invertebrate diversity may have taken about 7 million years to recover, though this may be a preservation artifact as anything smaller than is unlikely to be fossilized, and body size may have simply decreased across the boundary. A 2019 study found that in Seymour Island, Antarctica, the marine life assemblage consisted primarily of burrowing creatures—such as burrowing clams and snails—for around 320,000 years after the K–Pg extinction event, and it took around a million years for the marine diversity to return to previous levels. Areas closer to the equator may have been more affected. first evolved in the late Paleocene. The Late Cretaceous Decapoda crustacean assemblage of James Ross Island appears to have been mainly pioneer species and the ancestors of modern fauna, such as the first Antarctic crabs and the first appearance of the of the genera Linuparus, Metanephrops, and Munidopsis which still inhabit Antarctica today.
In the Cretaceous, the main reef-building creatures were the box-like bivalve rudists instead of coral—though a diverse Cretaceous coral assemblage did exist—and rudists had collapsed by the time of the K–Pg extinction event. Some corals are known to have survived in higher latitudes in the Late Cretaceous and into the Paleogene, and hard coral-dominated reefs may have recovered by 8 million years after the K–Pg extinction event, though the coral fossil record of this time is rather sparse. Though there was a lack of extensive coral reefs in the Paleocene, there were some colonies—mainly dominated by zooxanthellate corals—in shallow coastal (neritic) areas. Starting in the latest Cretaceous and continuing until the early Eocene, calcareous corals rapidly diversified. Corals probably competed mainly with red algae and coralline algae algae for space on the seafloor. Calcified Dasycladales green algae experienced the greatest diversity in their evolutionary history in the Paleocene. Though coral reef ecosystems do not become particularly abundant in the fossil record until the Miocene (possibly due to preservation bias), strong Paleocene coral reefs have been identified in what are now the Pyrenees (emerging as early as 63 Ma), with some smaller Paleocene coral reefs identified across the Mediterranean region.
Geology
Boundaries
Stratigraphy
Mineral and hydrocarbon deposits
Impact craters
Paleogeography
Paleotectonics
Paleoceanography
Climate
Average climate
Climatic events
Paleocene–Eocene Thermal Maximum
Flora
Recovery
Angiosperms
Polar forests
Fauna
Mammals
Birds
Reptiles
Amphibians
Fish
Insects and arachnids
Marine invertebrates
See also
Notes
External links
|
|